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Abstract

Remote function execution is the ability of a running program

to execute a selected function on a remote computer. This the-

sis examines remote function execution in detail, starting with

an implementation of remote function execution for Linux sys-

tems, moving on to the generation of a performance profile for

the implementation measured against an existing concurrent sys-

tem framework. A few of the more interesting possibilities using

this new technique are briefly explored and an implementation of

a domain-specific language which uses the remote function im-

plementation to automatically parallelise the evaluation of arith-

metic expressions is developed. The important contributions of

this thesis are:

• A functional framework and library to enable remote func-

tion execution,

• A demonstration executing unmodified binary programs on

a cluster of nodes,

• A performance profile of remote function execution as im-

plemented by the software,

• A domain-specific language leveraging the computational

power of a cluster for solving expressions in parallel,

• The creation of a new parallel-processing model which uses

neither shared-memory nor message-passing.

Further interesting Research Questions are developed in the find-

ings, possibly with a lead into future avenues of research into

remote function execution.
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Chapter 1

Introduction

1.1 Overview

Computer execution performance has not progressed much and execution speed

in terms of clock cycles have stagnated. The serial execution of instructions in a

processor has not advanced in the recent past. Figure 9 in [Smith et al., 2012]

displays quite clearly that raw processor speed has plateaued.

The answer to the above problem is to approach problems non-serially, either

using a parallel or concurrent approach utilising multiple computers. At one end

of the spectrum there is multithreading, which is parallel computation in which all

parallel executions take place in the same program within the same memory-space.

Most Operating Systems (OSes) support execution of multiple threads or tasks at

a time, with special support for multicore processors optimised for multiple threads

of execution at a time.

The other end of the multiprocessing spectrum is the message-passing model,

in which the separate executions share absolutely no memory with each other but

synchronise the computation efforts using messages sent back and forth between

nodes comprising the cluster.

Between these two multiprocessing models lie a number of approaches that are

neither strictly message-passing nor shared-memory threaded. These other mecha-

nisms are covered thoroughly in Chapter (2)).
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1.2 Proposed Mechanism

I propose that a multiprocessing mechanism using neither multiple copies of the

same program, nor being limited to a specific programming language, nor simply

calling remote services would pose some interesting new avenues of research.

In brief, I propose that new opportunities may exist in the event that it becomes

possible to write a single program that executes on multiple computers. To achieve

this I propose creating a mechanism to transmit and execute a local native function

in a running program to a remote node. This mechanism would function on such a

foundational layer of the software stack that it would be considered a system-level

service.

This would mean that such a mechanism would have to be provided as a system

library that can be used from virtually any programming language on the system

and any service offered by the system. Such a requirement precludes the usage of

a non-systems programming language as the development language. In Linux such

a library is written in either C or Fortran and the deliverable is a shared system

library matching the filename pattern lib*.so.

The ability to execute local functions on a remote computer may lead to a single

large program that runs on multiple computers rather than (as is the case now)

multiple individual programs running on multiple computers. Conceptually, these

are two very different approaches: a single program that selectively executes parts

of itself on remote computers vs multiple programs that are executed on multiple

computers.

1.3 Research Questions

A few of the more interesting questions raised by the existence of such a mechanism

are:

• What mechanisms exist to support the distribution and invocation of native-

execution functions?

• Is a message-passing design necessary for general purpose clustered and/or

grid computing if remote-function execution exists?

• Are there measurable differences in presenting a grid of computing nodes as a

single computer to a single program instead of as a collection of computers to
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a collection of programs?

• What are the effects on software design and architecture when changing from a

message-passing strategy to a remote-function execution strategy. Specifically

and importantly, what new opportunities can we exploit using this mechanism?

The questions naturally lead to the following objectives:

Core Develop a mechanism supporting the ability to invoke and/or execute

a remote function across multiple computers.

Core Benchmark the developed system against an existing industry method

to gain an idea of the comparative performance of remote-function

execution.

Advanced Use the remote-function system to run an existing and unmodified

program in such a way that it uses a cluster.

Advanced Demonstrate the opportunities that arise when the ability to execute

remote-functions is a reality.

This project, preliminarily named Rexel (Remote Execution Environment for

Linux ), is an altogether new approach to executing programs across multiple com-

puters and aims to provide an easy and scalable mechanism to distribute snippets

of a program across multiple computers. The snippets of code are pieces of native

code encapsulated as individual functions callable from within the systems native

libraries.

1.4 Process

This project did not involve human subjects in any way.

The flow of this thesis is fairly straightforward. Firstly, an examination of the

current strategies for distributed computing is presented (Chapter (2)). The litera-

ture dealing with the current strategies is presented along with each multiprocessing

method and a relevant existing example of the strategy.

Chapter (3) focuses on presenting a detailed technical view of the implementa-

tion of Rexel, including the rationale behind many of the design and engineering
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decisions. Some of the constraints that steered the direction of the development is

also mentioned. The successful implementation of remote-function execution is a

core objective of this thesis.

Thereafter another core objective, the results of a comparison between Rexel

with MPI, is presented in Chapter (4) and an advanced objective is presented in

Chapter (5), along with a few thoughts on further possibilities that may be exploited

by a system such as Rexel.

The final chapter, Chapter (7), focus exclusively on the knowledge gained from

this research and on the conclusions drawn from all the research carried out.
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Chapter 2

Multiprocessing: Current State of

the Art

There are many existing solutions that aim to distribute computational load across

multiple computers. The most basic method is to spawn a number of processes each

reading sections of the input data. Another method is to create multiple threads

of execution, all of which share the same memory space. Orthogonal to the shared-

memory approach is the share-nothing[Mitrović et al., 2013] approach in which none

of the threads share any data; they all pass messages to each other instead.

In between these two extremes we have a number of different approaches to the

problem of computational load-balancing across a cluster of nodes including hy-

brid systems which augment message-passing with a complicated, if limited, shared-

memory model. [Hoefler et al., 2013] presents such a system while also providing

informative coverage of other attempts at implementing shared-memory with MPI.

The most primitive distribution of a computing load is the distribution of stor-

age across a cluster of nodes. In this scheme multiple nodes are consolidated to

present a single large datastore. An example of this is the distributed directory

implementation of OrangeFS[Yang et al., 2011].

Another approach is the creation and submission of batch jobs to a master node

which then schedules the jobs on remote nodes as specified by the operator. This

often requires knowledge of the individual nodes in order to afford the operator the

ability to optimise their submissions. For example, the operator may have to specify

the minimum local storage or the minimum local memory needed for the batch job.

An example of a system that uses a batch submission approach is the Globus[Foster

et al., 2008] grid-computing platform.
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At a higher level of abstraction are those mechanisms that offload general purpose

programs onto remote nodes via system shell scripting or similar. These programs,

such as Gnu Parallel and Ansible[Hochstein, 2014], will take a single local program

and execute it on a known remote node. They require little setup and can work

with most programs written for a POSIX compliant platform. Due to the general

nature of these programs they are limited in features and scalability.

Some applications are designed specifically to spawn invocations of themselves

on multiple remote nodes. They have no need of the general purpose programs

mentioned above and have the necessary mechanisms built in. These applications,

such as Distcc[Clemencic and Couturier, 2014] and Gnu Make can spawn themselves

to work in parallel when directed to do so[Charwat et al., 2013].

Remote Procedure Calls (RPC ) offer a slightly higher level of abstraction. A

program written to use RPC system libraries can take advantage of services offered

by a remote computer. They are the most common form of distributed computation

due to being the foundation of many unix services[Peter et al., 2014]. The Networked

File System (NFS) which uses RPC as a foundation forms the basis of many High

Performance Computing (HPC ) clusters.

More sophisticated mechanisms are those that offer both a framework as well as

native libraries specifically for large-scale parallel computations. An example is the

Message Passing Interface (MPI )[Goodell et al., 2011] that is currently the most

popular form of parallel computing on HPC clusters. Just about any large scale

computation uses an implementation of MPI that conforms to the standard[mpi

forum.org, 2015].

Instead of language enhancements, as in MPI, there are concurrent execution

mechanisms that go even further and have native language support built into the

language. One of the most popular languages for large-scale concurrency is Er-

lang[Aronis et al., 2012], which is a language containing concurrency primitives

such as message-passing.

Newer language designers have opted for an even more sophisticated mechanism

by using a virtual software runtime as the target of the language rather than compil-

ing the language down to native code. This extra layer allows the runtime environ-

ment to present itself as a single resource even when it is distributed across multiple

nodes, thus allowing the programs written for the runtime to also be distributed in

a transparent (to the developer) manner. The Java Runtime Environment is prob-

ably the most well-known language runtime that offers this feature. Infinispan and
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Hazelcast[Kathiravelu and Veiga, 2014] serve as examples.

Even more specialised are those software products that are built specifically to

support a certain class of concurrent algorithms. For example Apache Hadoop[White,

2012] is designed to support MapReduce[Brown et al.] solutions and fare poorly

when used with solutions other than the intended one.

Then there are the specialised hardware solutions, which use the multiple pro-

cessors available on discrete computer graphics accelerators for less specialised com-

putation[Mivule et al., 2014]. These approaches are optimised for highly specialised

tasks involving large numbers of floating-point computations running on specialised

processors, either GPU, FPGA or ASICs[Taylor, 2013].

Finally, the most complex and ambitious mechanism: Distributed Objects. Us-

ing a Network Object Request Broker, a caller can instantiate unique objects on

remote nodes. While CORBA usage (and literature associated with usage) has

fallen, Distributed Objects still live on in technologies such as XPCOM[Onarlioglu

et al., 2013] and Java RMI.

The above is the current state-of-the-art in distributed processing. Each of the

above technologies fall into one of the following categories:

• Multiple programs running on multiple computers work together towards an

objective, or

• A single program can request services from other nodes within the cluster, or

• A virtual platform in the form of a runtime environment is used to execute that

platforms code on remote nodes which are running the same virtual platform

and runtime environment.

In summary, the current state-of-the-art in distributed computing works only

with a dedicated runtime environment OR uses a standard to specify copying and

executing whole programs on remote computers. None of the literature suggests

mechanisms to push code snippets to remote nodes and then execute them.

This project focuses very narrowly on distributing native-code functions across

multiple nodes. As such, it can be used to provide many of the functionalities in

the products and research mentioned throughout this chapter.

The artefact produced is expected to be foundational, used to provide

the ability to create new tools, and not necessarily as a solution to

a specific existing problem.
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Chapter 3

Core Objective: Rexel

Implementation

3.1 Goals

The goals of the proposed technology artefact turned out to be critical requirements

which influenced the choice of solution. Any solution that was unable to achieve

any one of the goals listed below was discarded.

Take any local native-code function and execute that function on

any number of remote nodes.

Allow any and all programs on the system access to this functional-

ity, regardless of source language used to program the application.

Prevent any dependency on a particular language. All dependencies

should extend no further than instruction-set and OS combinations.

The final goal listed above proved useful in exploring new possibilities; the ex-

periment in Section (5.1) would not have even been conceived off had Rexel been

dependent on a particular programming language.

9



3.2 Requirements

To properly answer the questions posed in Section (1.3) a technology artefact was

planned for development. Based on the objectives of this thesis and the research

questions in Section (1.3), the following minimal requirements for the proposed

system, Rexel, were:

• Allow execution of native code functions on a remote node,

• Allow the determination of the distribution strategy to be made at runtime,

• Provide system-level access to this mechanism, i.e. access to this mechanism

should not be limited to a particular programming language.

The above requirements ensure that any technical artefact produced will fulfill

the goal of running a single program across multiple computers, leading to meeting

the stated objectives and resulting in answers to the research questions.

Additionally, no requirement was made to allow cross-platform portability of the

resulting code-snippets - this is impossible as the code-snippets were to be native-

code, for a specific OS and hardware combination.

As a further relaxation of the constraints, no requirement was made for encrypted

or secured communications. Secure communications can be added to any communi-

cations channel using a secure tunnelling protocol, hence security is out of the scope

of this implementation.

3.3 Overview of Concept

The chosen method of implementing remote-function execution is, broadly speaking,

a simple enough concept: transmit the specified library file containing the function

over to the remote computer, then instruct the remote computer to selectively load

and execute functions within this library. Results from such an execution can then

be transmitted to the calling computer.

While this concept is simple enough to grasp in a couple of jargon-free sentences,

there are immediately obvious issues in performing the remote-function invocation.

Leaving aside the obvious security issues, the main question is, even if there exists a

program on the remote computer that can store and then load the specified library

file, how can the program know what parameters any given function takes?
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Other issues that appear daunting are those arising from the fact that there are

restrictions, even in individual programs, inherent in calling functions that are not

available for compiler examination during the building of the program. Most issues

were overcome, and a few issues were worked around in an acceptable manner.

3.4 Architecture and Execution

The Rexel framework is split into two separate and distinct programs: a rexel-node

program which runs on the remote computers and serves Rexel requests, and a

librexel-master.so library which client programs must link with at runtime in

order to make use of the Rexel framework.

The rexel-node program is a simple fork-based socket server that listens on

specified TCP ports for incoming instructions. Once an instruction is received the

corresponding function within rexel-node is executed using the parameters that

followed the instruction.

The communications protocol is a simple one and comprises merely a command

and list of parameters for that command. Each of the elements in the request is

packaged as an atom_t structure that is capable of representing all primitive C

datatypes. The number of parameters present in a request is dependent on the com-

mand used; for example the command to get status (percentage of RAM used, total

processor load, etc) takes no parameters, while the command to execute a particular

function takes virtually unlimited parameters. A comprehensive description of the

protocol used is present in the header files protocol.h and atom.h.

The master program is any program written to use the librexel-master.so

library. This library contains all the functions necessary for a program to connect

to, and use, rexel-node programs on remote computers. The librexel-master.so

library contains a constructor function that reads in configuration files on library

load (see Appendix A).

Once the constructor has loaded all the known nodes, the client program will

start executing from main() and all the Rexel functionality will be available. Note

that the client need not do anything other than perform dynamic linkage with Rexel.

The constructor ensures that before the client program even starts executing, all of

the Rexel) configuration is complete.

In the intended usage, the client program will call a Rexel initialisation function
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that specifies which namespace to use. Only nodes from the given namespace will

be used. The client can then call functions such as store_library() which will

take a given local library and transmit it to all the remote nodes in the namespace

for storage, or register_function() which will inform all the remote nodes in

the namespace to register the fact that the specified function exists in the specified

library. After this is done the client can call functions that will execute the specified

library on the remote nodes using the given parameters. Both synchronous and

asynchronous variations of callfunc() exist, with timeouts that can be specified so

that if a remote node crashes the local function will not wait forever for a response.

On the remote computer’s end, the rexel-node program will store any library

sent to it and call any function in a given library (if that library was sent to it - local

libraries on the remote computer are ignored by rexel-node). When a request is

received to register a function, rexel-node both loads the library containing that

function into memory and generates a template for future function calls using the

prototype that is sent with the function registration request.

The prototype is generated as a template suitable for use with libffi[Lang,

Green, Löscher and Sagonas, 2016], a portable library that enables the caller to call

arbitrary compiled native code functions at runtime. When a request to execute a

function is received, rexel-node populates the parameters to ffi_call() with the

parameters from the request, executes ffi_call() and decodes the result using the

prototype that was specified in the function-registration request. The result is then

sent back to the originator of the request over the open TCP port.

3.5 Challenges

One of the first challenges in producing the technology artefact that became the

Rexel framework was the issue of calling arbitrary compiled native-code functions

at runtime. The initial solution consisted of using the system’s dynamic loader and

linker functions, dlopen() and dlsym(). This solved most of the problem, in that it

allowed rexel-node to locate a specific function in a specific library at runtime. If

the function was compiled for a different platform then the dlopen function would

fail with appropriate error responses. If the function did not exist (or there was a

problem with the location of the function within the library), then dlsym() would

fail with appropriate error responses as well.

Having located and loaded the specified function, there remained the issue of
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calling it. Forcing a function-registration step prior to a function call allowed

rexel-node to ensure that it had a prototype for the function describing the primi-

tive types of each parameter to the function and the type of the return value of the

function. With this information, all that remained was to call the correct libffi

functions specifying the parameter types and the return type.

However, there were still some restrictions. For example, libffi did not support

the calling of functions that took a variable argument list. The reasons for libffi

not supporting these are simple - the C standard does not support all primitive

C types in variable argument lists. For example, the floating-point type float is

passed into a function not via the stack but via floating point registers. When the

instructions for a function call is generated, the compiler will know from the function

declaration whether it is a variadic function or not. If variadic, then the float type

is promoted to double and the function being called must use the value as a double

and not a float.

A similar situation exists for char, int8_t, short, int16_t and all of their

unsigned equivalents. These types are all promoted to int or unsigned int de-

pending on their sign. The reason for this being part of the C standard is due to

legacy compilers that promoted any integer literal to an integer if the literal would

fit in an integer. They did this because the compiler, at the point of generating the

instructions to call an undeclared function, would not be able to tell that the func-

tion foo took an integer when the function call was foo(5). Promoting anything

smaller than an integer to an actual integer allowed all these functions to work.

This presented somewhat of a problem, in that rexel-node supported a de-

veloped type called atom_t that could accurately represent literals smaller than

integers, and accurately represent floats and doubles distinctly. In the end, the

decision was made to conform to the C standard’s method of managing function

call type promotions rather than attempting to fix them (and introduce complexity

where none is really needed).

Another challenge that appeared roughly midway through the project was within

the rexel-node architecture. Initially the rexel-node program was designed as

a multithreaded server, in which incoming connections were handled by a thread

spawned for just that connection. Due to performance-issue necessity all sockets

(for all threads) were handled with a single poll() system call. This meant that

each worker thread had to communicate to the master thread to receive incoming

data and transmit outgoing data, and involved the use of mutexes to lock certain

data structures when data was incoming or outgoing. Under high loads the locking
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severely degraded the performance of the rexel-node program to the point that

unrelated threads were losing network data.

The solution was to redesign rexel-node to use a fork() based architecture

in which each incoming connection was handled by a fork()ed process. This kept

performance within reason as the network data then was only copied once, from

kernel to process, and not from kernel to master-thread, and then to child-thread.

The lessons from [Lee, 2006] were thoroughly re-learned in this exercise: the added

complexity of mitigating each of the problems presented by using threads in a non-

trival fashion almost derailed the project before it was properly started.

Threads are still used in parts of Rexel to achieve concurrency when talking to

multiple remote computers, albeit in a very limited and thoroughly inspected and

tested manner.

On a positive note, the strict testing that accompanied the development of each

module significantly helped smooth the development effort. Rexel and all the associ-

ated programs consists of around 14000 lines of code containing some 350 functions

written in C. A test-harness was used to perform automated regression testing after

each build, along with an automated method of checking that the tests passed using

the Unix diff program to determine differences between test executions. The unit-

test routines were all written to verbosely describe the action and result for each

test of each of the ≈ 300 functions that were tested.

3.6 Summary

The Rexel framework, as an artefact, meets all the stated goals. The artefact de-

veloped has performed as envisioned and, importantly, allowed further investigation

into the more interesting academic problems mentioned in the objectives.

All of the subsequent thesis objectives were dependent on a complete and suc-

cessful implementation of remote-function execution; Rexel was used as the imple-

mentation.

Rexel, as it currently stands, represents a complete achievement of

the objective: develop a mechanism supporting native-code remote-

function execution.
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Chapter 4

Core Objective: Comparison of

Rexel and MPI

4.1 Introduction

MPI is the de-facto standard in HPC applications[Cardellini et al., 2016]. It has had

over two decades of constant refinements[Cardellini et al., 2016] and improvements

and is usually regarded as the first option for high-performance multi-computer

applications.

It is for these reasons that MPI is chosen as the frame of reference when bench-

marking Rexel performance. To be clear, no expectation of improving upon MPI

performance was held when designing Rexel. MPI performance is used only as a ref-

erence upon which to judge whether Rexel is performing adequately and/or similarly

to MPI.

The problem chosen is a search problem with sparse results in a large search-

space, namely finding prime numbers up to a certain limit using trial division. Imple-

mentations for both Rexel and MPI are written based on a similar, almost identical,

implementation of trial division.

4.2 Executable Programs

Insofar as it was possible, both programs use the same algorithm with the same

compiler and compiler flags being used to generate the executable programs. Both
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programs were compiled on the same computer at the same general time and both

programs target the same hardware and OS combination.

No advantage was knowingly given to either implementation of the trial division

algorithm. Both programs use the trial division approach to find prime numbers as

displayed in the following pseudocode:

1. limit = <limit determined by user>

2. factor = 2

3. start loop

4. count primes from 1..factor

5. record duration while counting

6. factor = factor × 2

7. if factor >= limit then end

8. goto {3}

Note that the above algorithm uses two limits for the search-space. The first

is the outer limit and is determined by the user. The second is an internal limit

and is preset within the algorithm. The program simply begins searching for prime

numbers up to the internal limit, and then repeats the search with the internal

limit doubled. The program ends when the internal limit exceeds or meets the

user-determined external limit.

The reason for this is because time on the cluster is limited and it was desirable

to have an easy way to change the amount time a single execution took in order to

fulfill the intention of having three test-runs.

The Rexel implementation of the trial division algorithm is listed in Code Listing

4.1; the MPI version of the same algorithm is listed in Code Listing 4.2. The

differences between the two functions are due to the MPI version needing to be

MPI -aware in order to determine the portion of the search-space to work on. The

Rexel version does not need to be aware of the environment it is running in, although

it could be written to be Rexel -aware if performance gains were a priority. In Rexel,

the code executing on each node may use the context as an option but it is not

necessary.

This algorithm was chosen due to the performance profile of O(n2). An ex-

ponentially increasing duration was desirable as it allowed the search-space to be

increased by a factor of two multiple times during a single invocation of the program.

Absolutely no optimisation of the algorithm is performed.
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Listing 4.1: Rexel Trial Division algorithm
1 uint32_t internal_prime_count (uint32_t from, uint32_t to)
2 {
3 uint32_t total = 0;
4
5 for (size_t i=from; i <= to; i++) {
6 total++;
7 for (size_t j=2; j < i; j++) {
8 if (!(i%j)) {
9 total--;
10 break;
11 }
12 }
13 }
14 return total;
15 }

Listing 4.2: MPI Trial Division algorithm
1
2 int prime_number ( int n, int id, int p )
3 /***********************************************************************
4 Parameters:
5
6 Input, int N, the maximum number to check.
7
8 Input, int ID, the ID of this process,
9 between 0 and P-1.
10
11 Input, int P, the number of processes.
12
13 Output, int PRIME_NUMBER, the number of prime numbers up to N.
14 */
15 {
16 int i;
17 int j;
18 int prime;
19 int total;
20
21 total = 0;
22
23 for ( i = 2 + id; i <= n; i = i + p )
24 {
25 prime = 1;
26 for ( j = 2; j < i; j++ )
27 {
28 if ( ( i % j ) == 0 )
29 {
30 prime = 0;
31 break;
32 }
33 }
34 total = total + prime;
35 }
36 return total;
37 }
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4.3 Methodology

Care was taken to ensure that the results were all accurately captured and no results

were overwritten or lost.

The prime-counting programs both work identically and, save for the informa-

tional messages printed to screen, produce identical output in the form of three

columns of numbers containing:

1. The limit of the search-space,

2. The number of prime numbers found in that search-space, and

3. The duration of time it took to exhaust the search-space.

An example of the output is given in Code Listing 4.3. The format of the output

enabled easier data aggregation during the analysis of the data.

The testing consisted of three test-runs for each of the programs, with the upper

limit of the search-space set to 524588. A fourth test-run using an upper limit of

1048576 was performed after the first three test-runs as all three test-runs executed

faster than expected and thus there was still time left to use the cluster.

Each test-run consisted of executing each program on the cluster 10 times, start-

ing with a cluster-size of one node and ending with a cluster-size of 10 nodes. All of

the execution was automated (the shell scripts responsible for starting each program

is available in the git repo) and output from every execution was captured in a text

file named with the method (Rexel vs MPI ), the limit specified and the number of

nodes used.

In short, for each test-run, each program was first run with {limit=524288,

nodes=1}, then {limit=524288, nodes=2}, etc until the program executed {limit=524288,

nodes=10}. A final test-run using {limit=1048576, nodes=[1..10]} was executed for

each program.

4.4 Test Setup and Architecture

Each test-run was run on the same hardware and software combinations. To pro-

duce a cluster a single VM (Virtual Machine) was created on a borrowed VMWare

server that was designed and built specifically to host isolated VM s. This setup is

representative of most cloud-providers’ Virtual Private Server offerings.

18



Listing 4.3: prime mpi output
1
2 PRIME_REXEL
3 A rexel program to count the number of primes.
4 Running on 2 nodes
5 2 1 0.003288
6 4 2 0.006597
7 8 4 0.005358
8 16 6 0.003974
9 32 11 0.004020
10 64 18 0.007877
11 128 31 0.004159
12 256 54 0.007831
13 512 97 0.004252
14 1024 172 0.004157
15 2048 309 0.004442
16 4096 564 0.005991
17 8192 1028 0.014740
18 16384 1900 0.039568
19 32768 3512 0.138739
20 65536 6542 2.491621
21 131072 12251 3.092161
22 262144 23000 7.175698
23 524288 43390 27.195284

A total of 11 VM s were created: the first was used as the master and the other

ten were used as nodes in a cluster. To create the nodes, a single node was first

created with all the required software (including the benchmarking software used in

this test). This single node was created with 128MB of RAM and 1.2GB of hard-disk

space. It was installed with Linux Debian 8.0 (Jessie) and all unnecessary software

was removed (print servers, GUI support, etc).

After the first node was tested to ensure full and correct functioning it was

shutdown and then cloned another nine times. This ensured that every single node

was identical to every other node.

To reduce the possibility of network traffic from outside the test interfering with

the test, all of the ten cluster nodes were created within their own virtual network

that exists only inside the VMWare server. In other words, the actual network

packets never traversed a network and thus network speed and latencies could not

affect the execution of either Rexel software nor MPI software.

Further, the single master node in addition to being connected to the general net-

work was also logically connected to this virtual cluster-only network via a separate

network interface, also on the same VMWare server. This meant that communica-

tions between the nodes and each other and the nodes and the master were never

affected by actual network traffic. This is illustrated logically in Figure 4.1

All interaction with the nodes were from the master only as the nodes had no
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Figure 4.1: Network Diagram showing layout of the network for testing.

access to a real network. All interaction with the master were via an SSH session

initiated on the master’s general network interface so that no communication with

the master while tests were running would interfere with the nodes’ communications.

The master did not run any computation itself and this was specifically to ensure

that no latencies or delays were introduced in capturing the output of each node. For

the Rexel test the main program ran on the master while executing test functions

on the nodes. None of the test functions were executed on the master itself, even

though this is possible with the Rexel architecture, because of the desire to ensure

that the master correctly and timeously captured each nodes output.

The VMWare server was used at a time when load on the computing infrastruc-

ture was expected to be very low (Friday afternoon after all employees had left for

home).

4.5 Capturing and Preparation of Data

The results of each test-run were captured in a file representing the method used,

the number of nodes used and the limit specified. As an example the results for

executing the MPI program on four nodes with a limit of 524288 were captured in

a file called mpi-run.4.524288. The files resulting from each test-run are stored

in their own directory named from 1 to 4. Hence, the results of test-run 2 using

the MPI method on four nodes with a limit of 524288 can be found in the git repo
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under the name 2/mpi-run.4.524288.

To amalgamate the data into a single data source a shell script results2csv.sh

was written to read all the data files and produce a CSV (Comma Separated Value)

file that most spreadsheet software can import. The shell-script results2csv.sh

as well as the output of the script, results-all.csv is available in the git repo as

well. The file results-all.csv was then used as the master data source for all the

other analysis and operations.

Firstly, the file results-all.csv was imported in a spreadsheet program and the

spreadsheet program was used to generate some general statistics. The spreadsheet

file was then saved and is available in the git repo within the same directory as all

the other results.

Thereafter data for each of the internal limits (see Section (4.2)) was pulled

from the master data source using a shell-script specifically written for this task,

genmat.sh. This shell-script identified each internal limit within the master data

source file for each unique combination of method and internal limit. These records

were then passed to an external program which was written to accept these records

and return the mean and standard deviation for each record specified. The external

program is in the git repo as well, under the name statistics.lisp. The results of

all the executions of genmat.sh were written to a secondary data source file called

stats-per-searchspace.

Next, the statistics for each method were captured from the file “stats-per-

searchspace” into two new files, mpi-stats and rexel-stats. These two files, being

CSV files, were then imported into the spreadsheet where they were placed into rows

and columns in a manner suitable for the spreadsheet’s charting capabilities.

After an initial analysis of the data (including the generation of the charts), two

more shorter analysis took place due to unexpected outliers in the data. This is

discussed in more detail below in Section (4.7).

Finally, the spreadsheet was saved again in the git repo and was used to generate

the charts of all the results. All of the final data files, including the spreadsheet,

are in the git repo along with the master data source file, the raw data generated

by the programs and all the tools necessary to regenerate all the intermediate data

files and final data files which can be used to repeat the analysis at a later stage.
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4.6 Analysis of Results

Figure 4.2: Change in duration as cluster-size increases.

As detailed above, each test-run consisted of a number of individual invocations

of the program with cluster size varying from a single node cluster to a 10-node

cluster. This allows us to compare the performance differences as the cluster size

changes for both Rexel and MPI methods.

The results of all four test-runs for all user-defined limits were averaged to pro-

duce the chart in Figure 4.2. As expected for both the methods tested, the addition

of nodes to the cluster correlated strongly to a performance increase. While the MPI

method more often than not outperformed the Rexel method the Rexel method ap-

peared to be more consistent and predictable in optimally using additional nodes as

seen in Figure 4.2.

The results are not fully unexpected; after all it is expected that the performance

will increase as nodes are added to the system.

The number of nodes per cluster was not the only variable that was tested. The

other variable being tested was varying loads, implemented by means of increasing

the search-space for prime numbers. The algorithm (see Section (4.2)) tested up to

limits in powers of two, i.e. the algorithm first tested a search-space up to 1, then 2,

then 4, then 8, then 16, etc until it reached the user-defined limit. The user-defined

limit is 524288 for the first three test-runs and 1048576 for the final test-run.

The results for each of these search-spaces were grouped by search-space and

statistics were generated for these groupings as explained in Section (4.5). Due

to the linear scale of the charts the search-space durations and deviations for the

smallest and the largest search-space would not comfortably fit on a single-scaled

chart. To this end, the charts have been divided into two to display the results
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of varying the search-space: search-spaces up 16384 and search-spaces larger than

16384.

Figure 4.3: Change in duration as search-space increases (up to 16384).

Figure 4.4: Change in deviation as search-space increases (up to 16384).

The results in Figure 4.3 and Figure 4.4 show that, with a single exception at

search-space of 256, the Rexel method consistently outperformed the MPI method

in terms of both duration and consistency at search-spaces below 16384. However

MPI caught up in terms of performance and consistency at search-spaces of 32768

and surpassed Rexel above search-spaces of 32768 as shown in Figure 4.5 and Figure

4.6.

As Table 4.1 shows, Rexel performed well below MPI for the interval from 32768

to 262144. The performance of Rexel at search spaces above 262144 was still ac-

ceptable as the Rexel results were well within 20% of the MPI results, and was

approaching the MPI results as seen in the final three results sets for search spaces

above 262144 (displayed in Table 4.1).
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Figure 4.5: Change in duration as search-space increases (up to 1048576).

Figure 4.6: Change in deviation as search-space increases (up to 1048576).

4.7 Outlier Discovery

It was discovered during the analysis and generation of statistics that one of the test-

runs during Rexel execution had unusually high average duration. Upon looking into

the data it was found that during the execution of test-run number three across a

nine-node cluster, a single node had apparently encountered some sort of problem

and had taken over 3 seconds to respond (over 750 times longer than its peers).

This can be seen in Figure 4.3 and in Figure 4.4 as a large spike at the search-

space limit of 256. Unfortunately the problem that lead to this spike could not be

diagnosed as this anomaly was only discovered days after the cluster had been shut

down.

Further complicating the issue is that that the extreme magnitude of this outlier

was significantly skewing the results for Rexel . To gain a clearer view of Rexel perfor-

mance another set of statistics per problem space was generated that excluded test
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Limit MPI-avg Rexel-avg % Diff
32768 0.1211203 0.3725165 67.486
65536 0.3202916 0.8717096 63.257
131072 1.1217341 2.0540545 45.389
262144 4.2990723 5.2816940 18.604
524288 14.173408 17.534016 19.166
1048576 53.249565 64.070700 16.889

Table 4.1: The margin between Rexel and MPI performance at the higher end of
the search-space.

number three completely. This new set of results were the aggregation of tests one,

two and four only. Comments were left in the script genmat.sh with instructions

on how to go about regenerating this result-set.

Figure 4.7: Change in duration as search-space increases, excluding test three (up to
16384).

The revised statistics excluding the outlier are presented in Figure 4.7 and Figure

4.8. As can be seen in Figure 4.7, Rexel was performing very satisfactorily compared

MPI with the outlier removed. A further outlier was discovered in this revised

dataset at a search-space limit of 8192.

As this outlier had little effect on the ability to visually inspect Figure 4.7 it

was decided that no further cropping of outlying test results need be done. The

problem was that this new outlier presented the viewer of Figure 4.8 problems in

visually inspecting the chart; it is impossible to see the difference between Rexel ’s

standard deviations compared with MPI ’s standard deviations. As an aesthetic

measure, purely to improve the visual representation of the standard deviations

in this dataset, the outlying standard deviation in Figure 4.8 was replaced with a

linearly interpolated value (i.e. a value that lies midway between the previous data

point and the next data point).
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Figure 4.8: Change in deviation as search-space increase, excluding test three (up to
16384).

The result was a chart that was much clearer on relative consistency of Rexel

and MPI as can be seen in Figure 4.9. To be clear, there is no attempt at data

manipulation: the only reason to interpolate that single datapoint was to present

a chart in which the differences in the standard deviations between Rexel and MPI

were clear. The chart with the non-interpolated data point is presented in Figure

4.8.

Figure 4.9: Change in deviation as search-space increases excluding test three, in-
terpolated @ 8192 (up to 16384).

4.8 Summary

Rexel and MPI were tested together to determine Rexel ’s comparative performance.

The test setup consisted of a single master and ten nodes.

The nodes and the master were provisioned on a VMWare server that is repre-
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sentative of most cloud and VPS providers’ setups. Communications between the

nodes and each other and the nodes and the master were over an isolated virtual

VMWare network. The master communicated with entities outside the cluster on

a separate physical interface. All of the nodes were identical in hardware and soft-

ware and the master did not run any computations and did not contribute to the

benchmark.

Both methods employed in the tests solved the same search problem (finding

prime numbers in a limited search-space) using a trial division algorithm. The

algorithm was identical between the two methods employed with the exception of

the MPI algorithm needing to be MPI -aware. The Rexel algorithm, designed as a

local function that was in practice executed remotely, needed no such awareness of

cluster-context.

A total of four test-runs were performed with the fourth and final test-run per-

formed on an expanded search-space. Great care was taken during the test-runs to

ensure that the ≈ 950 data points were all collected accurately. Data was collected

for each search-space within each program invocation which was executed once only

for varying cluster sizes between one and ten nodes per cluster. This was repeated

for each of the four test-runs performed.

The results of the test-runs were aggregated to determine the average perfor-

mance for each of the methods employed on different cluster-sizes. The results were

further analysed to determine the average performance for each of the methods

on different search-spaces. Further analysis to mitigate the effect of outliers were

performed.

The analysis resulted in a number of charts visually depicting the relative per-

formances of Rexel and MPI. A single data point was interpolated to reproduce one

of the charts on a scale that allowed a more accurate visual representation of the

remaining data points.

The conclusion drawn from the charts is that the Rexel implementation of the

brute-force search solution offered a little performance advantage over the MPI im-

plementation of the same, particularly in the larger cluster sizes and smaller search-

spaces. The MPI implementation offered superior performance over Rexel in large

search-spaces but negligible performance benefits in small cluster sizes.

Overall, for both large and small search-spaces and large and small cluster sizes

Rexel performed with a smaller deviation than MPI . Rexel was consistent and pre-

dictable, both during the times it had the performance advantage and during the
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times it performed poorly compared to MPI . At all times Rexel was consistent.

The ends of the scales used, namely cluster sizes of eight, nine and ten and search-

spaces of 262144, 524288, 1048576, turned out to be very interesting. At cluster sizes

of eight, nine and ten the MPI implementation gained much more consistency, and

at the search-spaces of 262144, 524288, 1048576 Rexel approached the performance

of MPI.

The implication of the results of the upper ends of cluster size and search-spaces

is that a larger test incorporating a larger cluster size and larger search problem

could very well reveal a different performance and consistency profile to the results

of the current test.

As a final point, it is worth noting that MPI and Rexel both have slightly

different goals even as both aim to provide parallel and concurrent computational

methods. Rexel aims to provide the ability for a single program to execute across

multiple computers while MPI aims to provide a framework enabling the execution

of multiple programs on multiple computers to solve a single problem.

In view of the slightly different goals the results of the comparative testing can

be seen as something of a success for Rexel, which was written in a month by a

single developer, as Rexel managed to mostly keep up with and in some cases even

exceed the performance and consistency of the industry-standard MPI which has

been refined and optimised by large groups of skilled experts over 20 years.

More optimisation efforts towards Rexel might enable it to be more

performance-competitive with MPI within the current test parame-

ters.
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Chapter 5

Advanced Objective: Porting

Unmodified Programs

5.1 Overview of Objective

This chapter deals with the objective of running an unmodified program, designed

to run on a single computer, on a cluster of Rexel nodes. The reason for attempting

such an endeavour with Rexel was to demonstrate a new technique that becomes

available in the face of an ability to execute native-code functions remotely.

A secondary reason is to demonstrate the power and flexibility that is inher-

ent in providing a system-level framework over a framework bound to a particular

programming language (see Section (3.1)).

The goal of this experiment is simple:

Demonstrate remote-execution on an unmodified existing binary

program.

The subject chosen for this little experiment is SQLite[Owens and Allen, 2010],

an embedded and self-contained SQL capable database. SQLite is a single-user,

single-process, non-multithreaded-capable database which stores the entire database

in a single file for convenience. It is extremely popular as an addition to standalone

programs which need to store data but have no need for a full Relational Database

Management System (RDBMS ).

In addition to being used by standalone programs, SQLite comes with an interac-

tive program which allows the user to query the database file (whether that file was
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created by the SQLite library or the the standalone program is of no significance).

5.2 Implementation Details

The program sqlite3 was executed using input that created and populated a single

table, then selected the entire table (The test script is in Appendix C.1).

The sqlite3 program was then run with the table-creation input a second time

while being monitored by the system program strace[Stevanovic, 2014]. The pro-

gram strace monitors running processes and produces a log of all the system calls

the process made along with the arguments passed to the system calls.

The output of strace was then searched for all the filesystem calls. The search re-

vealed that sqlite3 uses system calls open(), close(), read(), write(), fstat()

and lseek(). New versions of some of the above functions were then written and

packaged into a library, libnetdup.so.

The environment variable LD PRELOAD was set to the value “libnetdup.so”.

Setting the environment variable LD PRELOAD in Linux causes the specified library

to be loaded ahead of any system library, thus any functions that are found in the

preloaded library are used in place of any functions of the same name from a system

library. In this way, it is possible to replace specific system calls with a user-specified

function.

The replacement functions written were open(), close() and fseek(). These

replacement functions all used Rexel to perform the file operations they replaced

both locally (by calling the local functions open(), close(), etc) and calling the

same function on a number of remote Rexel nodes.

The intention was to intercept any file-modification calls made by the program, in

this case sqlite3, and then call the same function remotely on a different computer.

In this way, when sqlite3 called the system function open(), it was intercepted by

the replacement in libnetdup.so which then called the real open() system call, in

addition to calling the open() system call on remote Rexel computing nodes.

In this manner, any file created or modified by sqlite3 would be instantly and

constantly replicated across the entire cluster.

The logical architecture of the system is shown in Figure 5.1, with the system

call being made displayed in Red and the return value displayed in Green.
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Figure 5.1: Logical Model of the environment used to run SQLite on multiple nodes.

5.3 Result of Experiment

This experiment produced a mixed result; on the one hand the unmodified binary

program successfully utilised multiple nodes in a cluster (the actual test used four

nodes) without being aware that it was running in a cluster. After the files on all

nodes in the cluster were determined to be identical, this experimental development

was considered a success.

On the other hand, the program sqlite3, as it stands (unmodified), is not aware

of any remote computers or parallel function calls. All it knows is that it wrote (or

read, or seeked) a file, and it expects a return code for that write/read/seek. The

replacement functions do indeed return the correct results for the local filesystem

operations, but not for operations executed on remote nodes.

The reason for not returning any values from the remote-function invocations for

the filesystem operations is simple: there is nothing that can be done if the remote

call fails. There is no way to return an error code to the sqlite3 program that says,

in effect, “A remote function failed”, because sqlite3 is not modified to understand

the concept of parallel filesystem calls, or of multiple processes.

Thus, because the program was not aware of multiple executions of the filesystem

function calls, there was no way to inform the program about failure of any of the

nodes. A little more thought was put into this, and to mitigate this in future

executions of this nature the replacement functions in libnetdup.so can report the

error to another place, perhaps the system log. This allows the administrator the
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ability to at least determine that a failure has occurred and take appropriate action.

A final note: although only filesystem function calls were intercepted in this

experiment, Rexel is not limited to filesystem calls. Any library function, including

ones that ship with a program, can be replaced in this manner so that certain

functions are run in parallel on multiple nodes in a cluster. This functionality

does not need any modifications to the binary program as was demonstrated using

SQLite.

Large programs with computationally expensive functions would benefit from a

similar effort to the one performed in this experiment for SQLite.

An unmodified binary program was successfully distributed across

a cluster using remote-function execution.
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Chapter 6

Advanced Objective: Partial

Shared-memory Processing

This chapter discusses an arithmetic expression evaluator designed to offload subex-

pressions onto remote computers. This is performed using a partial shared-memory

approach, differing from the traditional parallel computation architectures which

use either a shared-memory approach or a message-passing system.

The goal is to marry the simplicity of use associated with the shared-memory

approach [Mivule et al., 2014] with the scalability and robustness of the shared-

nothing approach [Mitrović et al., 2013]. There are many problems with shared-

memory systems using threads or similar[Lee, 2006, Ousterhout, 1996, Parekh et al.,

2000, Rinard, 2001, Sutter and Larus, 2005], not least of which is the fact that some

of these problems are, in practice, unsolvable due to the non-determinism introduced

by threads[Lee, 2006, p.5].

There are also existing implementations of shared-memory and message-passing

hybrids[Hoefler et al., 2013]. These systems implement full two-way shared-memory

over MPI and therefore possess all the existing shared-memory problems, such

as deadlocks and data-races, and introduce new problems, such as synchronisa-

tion[Hoefler et al., 2013, p.8].

The implementation of this concept, code-named The Uncommon Lisp Environ-

ment, is comprehensively detailed in Appendix B. The source is available in the

source code repository.

While there is no shared-memory nor explicit message-passing in the implemen-

tation discussed in this chapter, implicit use of Rexel ’s remote-function execution
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facilities is made. On a physical layer there are indeed bits and bytes communicated

between remote computers, so in effect there is a form of message-passing occurring,

but the input to the interpreter does not reference message-passing in any way. The

author of the expression will not have any indication that the expression is evaluated

in parallel.

Conceptually, a program interpreter can examine each expression and decide

whether or not to offload that single expression onto a remote node or to evaluate it

locally. From the programmer’s point of view there is no difference between the two

approaches the program interpreter takes - they both result in the same answer.

6.1 Language Grammar

There are numerous challenges in implementing a partial shared-memory program;

questions that sprang to mind upon conception of a partial shared-memory approach

were numerous. For example, how would a changing variable be reflected to other

threads/processes? How does the interpreter determine if a function F () is available

on a different thread/process of execution? How can the interpreter determine if it

is safe to offload function G() to a separate node. What if G() calls F () in some

indirect fashion and F () is not available on the node that G() is executing on? What

if both G() and F () are executed out-of-order due to running on different nodes?

To address many of the more obvious issues the approach chosen was to prefer

a functional language over an imperative one. This allows the expression evaluator

to assume that functions have no side-effects and to allow expressions to be evalu-

ated out-of-order, mitigating the most challenging issues in the implementation of

a partial shared-memory program.

One advantage of using a Lisp based grammar and syntax for the input is the

relative simplicity of tokenising a series of parenthesised prefix expressions into a

tree that can be evaluated. Another advantage with a regular and consistent syntax

is that very few exceptions to a general rule need to be written. Using an imperative

style of input would have required special keywords or grammar to define variables

or specify operation order. A parenthesised prefix expression is flexible enough to

represent both variable definitions and operation order with the same simple rule -

All expressions are surrounded by parentheses and the first element of the expression

denotes the operation.

This allows a single type of expression to be used no matter the operation needed.
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For example, representing a calculation can be as simple as (+ a b) with the + being

the operation, and defining a variable will be identical save for the operation name

- (define symbol value).

Figure 6.1: Storage of a simple expression

However the most compelling reason for using parenthesised prefix expressions

over, for example, infix expressions, is the ease with which a parenthesised expression

can be transformed into a tree with branch-nodes specifying operation and leaf-nodes

specifying values. As can be seen in Figure 6.1 the prefix expression can be used to

construct a tree in a single pass from left to right while the equivalent infix expression

will need multiple passes.

The final item of note is that parenthesised prefix expressions are capable of

representing a turing-machine equivalent computation given the necessary primi-

tives[Boyer and Moore, 1983]. While these primitives are missing in the expression

evaluator developed over the course of this investigation, they are trivial to add to

the existing codebase.

For example, the interpreter provides a p-define operator which defines a vari-

able on a logical program stack. This can be easily changed to instead define a

variable within another list, and subsequently use that list as a temporary program

stack (an alist, in Lisp terms, which is an associative array) which is used for

symbol resolution for the subtree beneath the p-define branch-node.

Another example would be defining new functions in terms of the existing lan-

guage, i.e. creating new functions not in C but in the parenthesised prefix-notation
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language used by the interpreter. Because there is already an existing primitive

which merely returns all of the evaluated child-nodes as a single list, functions can

be defined in terms of subtrees with alist’s containing closures over the subtree to

hold the parameters to the function. The addition of a closure allows the interpreter

to implement recursion within any particular portion of the tree.

What that all means, on a practical level, is that although the expression evalua-

tor is built as a proof-of-concept arithmetic evaluator, the tree traversal (which is the

process that gets parallelised over several computers) can represent any computer

program, not just arithmetic expressions, given the required primitives.

Any parallelism implemented via tree traversal applies to computer

programs in general, not just to the evaluation of arithmetic expres-

sions.

6.2 Expression Evaluation

Once a tree is constructed, a simple recursive traversal and application of branch-

node operations onto leaf-node values is sufficient to evaluate the expression. A tree

is composed of branch-nodes (signifying an operation) and leaf-nodes (signifying

a value). A branch-node may possess one or more child-nodes, and a child-node

may be either a leaf-node on the tree (i.e. a terminal node) or a branch node (i.e.

consisting of one or more child-nodes).

The evaluation process is as follows:

• Evaluation of a leaf-node results in a value.

• Evaluation of a branch node results in all of the child-nodes attached to that

branch being evaluated.

• Upon completion of a branch-node evaluation, the branch-node is replaced

with the result of its evaluation and becomes a leaf node.

The evaluation process is depicted visually Figure 6.2.

The ability to evaluate an entire expression in parallel is natural with a tree

such as in Figure 6.1. An example of parallel tree traversal with two computers,

a Red computer and the Green computer, is shown in Figure 6.3. The tree is

broken at two nodes, Node E and Node D. The subtrees consisting of Node E is

then evaluated on the Green computer while the subtree consisting of Node D is
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Figure 6.2: Sample evaluation of a simple expression

evaluated on the Red computer as shown in Figure 6.4. Once the evaluations on

each computer is completed those branches in the local tree are then replaced with

leaf-nodes containing the results from the Red and Green computers and evaluation

via traversal continues as normal.

Figure 6.3: Parallel evaluation: Break off entire branches for each computer to
process

It should be noted that performances in using a tree-traversal method in evalu-

ating expressions would only be gained if the subtrees selected for parallel evalua-

tion were of a sufficient level of computational complexity. There are currently no

methods to determine the duration of an execution before it starts (or even if an

execution will ever end)[Hehner, 2013], however there are methods available that

use past execution of a problem to estimate duration of the next execution[Saha
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Figure 6.4: Parallel evaluation: Wait for each computer to return a result

et al., 2013].

6.3 Shared and Non-shared Memory

As variables and variable referencing is supported within the interpreter there still

remained the problem of how to determine if a branch-node in the tree referenced

a variable that did not exist on a remote computer. Two methods were devised to

deal with this challenge:

1. A subtree which is transmitted to a remote computer for evaluation is transmit-

ted along with a copy of the program stack that contained only the referenced

variables.

2. During tree construction any variable references (symbols) were looked up

immediately and substituted with the actual values if possible.

After implementation Method 1 from above was deemed superfluous due to the

efficiency of Method 2. Distinctions between operations safe for remote-execution

and operations unsafe for remote-executions were programmed into the system. This

ensured that any branch-node operator such as the assignment of a variable would

38



Figure 6.5: Parallel evaluation: Resume normal traversal

not be executed remotely.

It quickly became clear that memory does not need to be shared between the

parallel executions that occurred during tree traversals - the process explained in

Section (6.2) proved simpler than expected in practice. Any time a value is needed

by a parallel execution of the tree traversal a copy of the value is sufficient to

complete the parallel evaluation.

While copying of values were sufficient for evaluation, there was still the problem

of value assignment using the operator p-define. Any subtree being evaluated may

contain a branch-node that uses the p-define to assign a value to a named-variable.

For example,

(p-define max 12)

assigns the value of 12 to the variable named max. Additionally, the expression rep-

resenting the value might not be a literal - it might be the result of an expression

itself. For example the following expression assigns the result of a subexpression to

the variable max

(p-define max (* (+ 2 4) (- 3 4)))

Consider the problems in the above expression. The first problem is that the

expression is parsed left-to-right. This means that the variable is encountered prior

to any definition of it. The tree construction cannot perform a substitution of max

with the actual value of max because max does not exist at that point.

The next problem is that the expression specified as the value to use must first

be evaluated before max can be assigned.
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Both these problems encouraged a re-examination of the tree-construction method.

A solution was implemented such that the construction of the tree did not attempt

any variable lookups. In brief, name-resolution of nodes with a symbol and not a

value was deferred to just before evaluation. This allows the variable to be ignored

until such time that all the dependent evaluations were completed.

The evaluation proceeds recursively and begins with the leaf-nodes of the expres-

sion. This means that by the time the assignment operation is needed the evaluation

of the expression is completed, regardless of whether or not the interpreter evaluated

the subexpressions locally or remotely.

Figure 6.6: Assignment Evaluation step-by-step

An example of each step of the evaluation is shown in Figure 6.6. Each of the ex-

pressions in each step that are due for evaluation are shaded in pink while the results

of the evaluation of the previous step is shown shaded in green. This reinforces the

earlier justification for choosing a parenthesised prefixed-notation expression format.

6.4 Summary

The goal of this investigation is considered to be achieved: it is possible to per-

form multiprocessing using only remote-function invocations and without a shared-

memory model nor a message-passing model.

Traditional shared-memory in the context of multi-threaded and multi-processing
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environments refers to a variable visible to all threads of execution. Changes to this

variable is achieved using Mutexes (Mutual exclusion locks)[Wong et al., 2014]. A

thread that shares a variable with another thread in this manner expects to lock the

variable for exclusive access any time either thread accesses that variable, regardless

of access type (read/write). The sharing of a variable under a shared-memory scheme

means that the variable is shared in both directions.

The approach chosen for the expression evaluator developed in this chapter is a

partial shared-memory approach. This differs markedly from the traditional shared-

memory approach in that the data that is “shared” between different computers

are shared in one direction only. The sharing is not reciprocal. This leaves the

implementation the option to send only copies of the data to the destination thread

when data is shared, as the source thread (the one hosting the variable) is guaranteed

one-way sharing only.

The traditional shared-memory approach was found to be largely unnecessary to

represent parallel tree evaluators. Explicit message-passing was likewise unnecessary

and the parallel evaluation of subtrees occurs in a manner fully transparent to the

user or programmer.

In the implementation of partial shared-memory the subtrees were shared over

a network with remote computers. An implementation performing similar sharing

between threads on a local computer in a shared address space would probably

benefit from repurposing the Copy-on-Write model usually found in computer-disk

related algorithms[Wu et al., 2015]. Trees are unusually well-suited to a Copy-on-

Write model as subtrees that do not differ between copies can be reused trivially by

merely reassigning pointers.

There is potential to use the existing developed system as a step towards a

turing-complete interpreter[Boyer and Moore, 1983]. Such an implementation would

involve the addition of temporary stacks to store variables. Creation of stacks (to

store variables local to a subtree) was originally planned but found to be superfluous,

although remnants of subtree stacks can be found in the codebase still (see Appendix

B).

Much like existing Lisp implementations, the definition of a function would be

simply a subtree, and as a subtree it can then be treated identically to every other

variable. A function definition subtree can be attached to any particular point on the

tree prior to traversal, which means that portions of the tree that get evaluated on

remote nodes will automatically retain all context necessary for complete evaluation.
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No need was found for shared-memory, nor for programmer-managed or explicit

message-passing. All that is necessary is the ability to transmit subtrees to remote

computers, and then evaluate them on those remote computers.

As intended, parallel computation is achieved with neither the need

for shared-memory, nor the need for explicit message-passing.
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Chapter 7

Findings

7.1 Objectives

The bulk of this thesis dealt with the technical deliverables needed to achieve the

objectives listed in Section (1.3). The most important objective, “Develop a remote

function-execution mechanism” was detailed in Chapter (3). Rexel was developed

as the Remote Function Execution Mechanism, and has met all the goals needed to

achieve the other objectives.

This mechanism was then rigorously tested against an industry standard com-

petitor, MPI, to determine a comparative performance figure for Rexel. The method-

ology, testing, analysis and results of the benchmarking is thoroughly documented

in Chapter (4). The findings of the analysis indicated that while MPI possesses a

slight performance advantage to Rexel within certain specific parameters, Rexel did

indeed hold a performance advantage within other (fewer) specific parameters.

Overall, Rexel performed considerably better with regards to consistency of per-

formance even when performing within those test parameters in which MPI per-

formed better. Rexel was more consistent, more of the time. The full summary of

the benchmarking findings are presented in Section (4.8).

The advanced objective, “Distributing the load of unmodified single-threaded,

single-user and single-processor binary program on a cluster”, was achieved by exe-

cuting an unmodified SQLite program within a Rexel enhanced environment in such

a manner that all nodes in the cluster were used. The development and results of

this experiment are discussed in detail in Chapter (5).

Although the objective was achieved, the results were mixed and considered
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mostly successful. The effort needed to turn the experiment into a fully successful

one is documented as the results of the experiment in Section (5.3).

The last advanced objective comprised a large part of this project; the objective

was to determine if remote function execution leads to any new software architecture

and/or design pattern. The goal of this objective was to determine if it is possi-

ble to develop a parallel execution model that required neither shared-memory nor

message-passing.

The program written to investigate this interesting avenue is an evaluator for

arithmetic expressions. The program was written to read prefix-notation arithmetic

expressions, evaluate the expression and print the answer. The conclusions of this

investigation is presented in Section (6.4) with the investigation itself document in

full throughout Chapter (6).

In brief, the investigation into a partial shared-memory approach to program

design found that the expression evaluator worked exactly as intended by offloading

subexpressions onto remote nodes without requiring the input grammar to be capa-

ble of expressing parallel constructs. The partial shared-memory approach resulted

in values being shared in one direction only (partially shared) thus doing away with

the need for mutexes on the memory being shared.

Two extra points of interest are also presented in Section (6.4):

1. With very little effort the evaluator can be turned into a full turing-complete

machine, making it possible to develop general purpose software that uses

partial shared-memory within an expanded evaluator, and

2. There is the possibility of further optimising the evaluator to execute con-

currently on a single machine using Copy-on-Write to implement the partial

sharing of values.

The final conclusion of Chapter (6) is that parallel computation was achieved

across multiple computers requiring the use of neither shared-memory nor message-

passsing.

7.2 Research Questions

The completed objectives, both core and advanced, lead to a few not fully unex-

pected answers to the research questions and a few very surprising answers.
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As expected, there are few mechanisms supporting the execution of remote func-

tions; the lower layers needed to transmit, load and execute a function already exist

in the form of system calls like dlopen() and dlsym() to load functions at run-

time, and libraries such as libffi() to execute undeclared functions at runtime.

However, until the development of Rexel pulled these tools together into a single

coherent system, these were disparate tools that had little relation to each other.

Also not totally unexpected is the finding that while there are measurable per-

formance differences between a single program that runs on multiple computers and

multiple programs running on multiple computers, these differences are small. The

comparative testing performed in Chapter (4) displayed an advantage to the MPI

solution in terms of performance and an advantage to the Rexel solution in terms

of consistency.

The finding that the existence of remote function execution as exemplified by

Rexel did in fact open up new possibilities for program design was also somewhat

expected, as this was the goal all along. The unexpected benefits came as somewhat

of a surprise even though preparation was made to exploit new opportunities.

For example, it was gratifying to discover that Rexel could provide parallel execu-

tion functionality even to existing and unmodified software, as presented in Chapter

(5). As emphasised in Section (5.3), though, there is more benefit in utilising Rexel

directly from within the source code of software rather than by wrapping the un-

modified program within a rexel environment.

The expression evaluator Chapter (6) was initially designed to exploit remote

function execution by offloading subexpressions onto remote nodes. Development

of this evaluator resulted in the realisation that the specific opportunity being ex-

ploited (partial shared-memory) could apply to parallel computation on individual

computers.

Further, it was realised towards the end of the development effort that the soft-

ware could be turned into a proper general-purpose programming language while

still exploiting the new possibility of partial shared-memory that was opened up.

This was an unexpected development and, had this been known at the start of

the development, more effort would have been expended exploiting this singularly

interesting discovery.

Even more surprising were the possibilities that were investigated but not in-

cluded in this report (a few are mentioned in Appendix D), such as the ability

to process suspect data on a remote machine (such as during input-randomisation
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testing[Avgerinos et al., 2014]).

Overall, Rexel has demonstrated that:

• Mechanisms to execute native-code functions remotely do exist, and

• A remote function invocation model can replace a shared-memory model and

a message-passing model, and

• There are few measurable differences between executing a single program over

multiple computers vs executing multiple programs on multiple computers,

and

• The effects of a remote function execution capability on software design is

both dramatic and positive, resulting in multiple new opportunities. These

opportunities were all too numerous to exploit within the scope of this thesis,

although the more interesting possibilities were pursued, demonstrated and

reported on.

7.3 Further Avenues of Research

The findings produced by this research effort raise many more questions. For ex-

ample, how does the comparative performance profiles as presented in Section (4.8)

change for both the approaches chosen when the test parameters are increased?

Are there any performance optimisations possible in Rexel that would match the

20 years of performance optimisations and refinements in MPI ? At what point does

the extra effort and complexity of MPI exceed the performance benefits gained?

Chapter (6) raises many more questions. Is an effort to enhance the software

to be turing-complete a good expenditure of effort (does the world need another

programming language, even if it does bring something new to the table)? As a

general-purpose software language, would the expression evaluator result in even

more new opportunities that are made possible with a partial shared-memory ap-

proach? Can the software be optimised to selectively parallelise code-snippets based

on complexity measures?

This thesis exploits only the most obvious possibilities of a Rexel -type framework;

no doubt there are many more that exist which are yet to be discovered.
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Appendix A

Format of Rexel Configuration

Rexel configuration data for those programs using Rexel as a master is stored in a

set of files on the machine that is to run the master component of Rexel. The client

program need not be written specifically to load the configuration files - a constructor

in librexel-master.so automatically loads the configuration files when the library

is loaded.

There are potentially multiple configuration files. Each of them may specify

different nodes in the cluster, and configuration data from the files read later in the

process will be preferred over the configuration data read earlier in the process.

Configuration data need not conflict, as the configuration files implement names-

paces so that the same node may be specified multiple times in separate namespaces.

1. The file /etc/rexel/rexel-masterrc is processed if found,

2. The file $HOME/.rexel-masterrc is processed if found,

3. The file $PWD/rexel-masterrc is processed if found,

4. Finally the file $PWD/.rexel-masterrc is processed if found.

The format of the file is simply a single command on a single line. Each command

takes a single argument. All of the example programs have a rexel-masterrc file

to work with, so there are plenty of examples in the codebase.

The commands are:

start list Create a new namespace, switching to it.

in list Switch the namespace.

end list End the current list (switch to no-list).
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add node Adds a node to the current list.

del node Unimplemented, RFU

The format of a node added with add_node is address:port. Namespace names

and addresses may not have spaces in them. Comments are started with a single ’#’

character and extends from that character inclusively to the end of the current line.

An example configuration file used during development of the sqlite3 wrapper

libraries:

1 start_list netdup # Create and use namespace ’netdup’
2 add_node 10.0.0.201:42424 # Add a node
3 add_node 10.0.0.202:42424 # Add a node
4 add_node 10.0.0.203:42424 # Add a node
5 add_node 10.0.0.204:42424 # Add a node

Upon initialising the Rexel-master API the caller specifies the name space con-

taining the nodes they wish to use.
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Appendix B

The Uncommon Lisp Environment

The Expression Evaluator developed for this project is based on a regular grammar

that is loosely based on Lisp-like programming languages. This section deals with

the details of implementing the interpreter, called The Uncommon Lisp Environment

(abbreviated as Uncle).

B.1 Expression Evaluation

Figure B.1: Sample evaluation of a simple expression

All expressions can be expressed in terms of an evaluation tree. Traversing this

tree in the correct order and replacing each node with the result of evaluating all

that node’s children is an easy way to visualise the evaluation of a single expression.

A simple example showing infix expressions is depicted in Figure B.1. However, the
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design of the expression evaluator discussed in this section uses prefix expressions

as input, not infix expressions.

Infix expressions have limitations. Specifically, the order of the evaluation has a

significant effect on the result and certain rules have to be adhered to even with the

presence of parentheses to clearly delineate subexpressions. However using either

prefixed or postfixed expressions such as those in Lisp-like languages or stack-based

languages removes all ambiguity from the expression.

As an example, the infix expression “12+5×8+4” is ambiguous until parentheses

are added, while the prefix expression “× + 125 + 84” and the postfix expression

“125 + 84 +×” are both unambiguous and clear. The prefix expression is a natural

fit for a tree structure. Even simple input such as “((2 + 5)× 4) + 8” requires more

than a single pass to evaluate, while the equivalent prefix expression “+× 4 + 258”

can be evaluated as each operand is encountered. Ordinarily more than a single

pass through an expression is acceptable, but the goal of the expression evaluator

developed for this investigation was to offload subexpressions onto remote nodes.

This requirement precludes forced-order evaluation of subexpressions.

Another reason for choosing prefix expressions over infix expressions is the rel-

ative ease with which they can be extended from binary operations to n-arity op-

erations. Lisp-like languages (such as Common Lisp and Scheme) use this facil-

ity to great advantage, in the process simplifying the prefix representation. Using

unlimited-arity, the expression “+ + +25 + 48 + 36” becomes a more understand-

able “+ 2 5 4 8 3 6”. Subexpressions are, in this representation, parenthesised. The

parenthesised version appears as “(+ 2 5 4 8 3 6)”, and, as part of a larger expression

(for example, finding an average), “(/ (+ 2 5 4 8 3 6) 6)”.

Finally, the decision to use prefix expressions was influenced by a very practical

concern, namely that such representations have in the past been extended into full

programming languages. While it is perhaps unlikely that the expression evaluator

developed in this section becomes a serious programming language, the facility for

doing so comes at no cost when using prefix expressions.

For example, operators can be thought of as primitive functions. This means

that functional programming can be added in the future with very few changes to

the grammar used in the input data.
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B.2 Design of Expression Evaluator

B.2.1 Evaluation

Figure B.2: Storage of a simple expression

All expressions can be expressed in terms of an evaluation tree. The approach

chosen is similar to the current functional language approach used by systems such as

Haskell in that it is an “implicit, semantically transparent parallelism”[Jones et al.,

1996]. Each element in the input is constructed as a node in a tree, with values (both

variables and literals) stored as leaf-nodes and operators stored as branch-nodes as

shown in Figure 6.1.

The tree is made of branch-nodes and leaf-nodes. Evaluating a leaf-node simply

results in that leaf node. Evaluating a branch node causes a recursive evaluation

of all that branch-nodes leaf-nodes. For example, evaluating the leaf-node “G” in

Figure 6.1 simply returns “5”. Evaluating the branch-node “” cause evaluation of

“E” and “D”, which in turn causes the evaluation of “F”, “G”, “H” and “I”.

Every branch in the tree can be independently evaluated without waiting for any

non-child branch. For example the branch represented by 3 + 4 can be evaluated

without any results needed from the branch represented by 2 + 5. As these two

branches are not dependent on each other they can thus be evaluated in parallel.

In the implementation of the expression evaluator these branch-nodes are evalu-

ated on different logical nodes in a cluster. Once a branch-node is fully evaluated it
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is replaced with a leaf-node containing the results of the evaluation. The process is

then repeated for the parents of the new leaf-node, and in this way the entire expres-

sion is evaluated making use of as many remote computers as there are available,

one for each branch-node evaluation.

From a users’s point of view the multi-processing is fully transparent. The eval-

uation of each branch-node may take place on the local computer or (unknown to

the user) the interpreter may offload a certain branch to a remote node.

While the interpreter possesses a program stack (in addition to the native code

stack provided to all running programs by the OS ), evaluation rarely needs to access

the stack. The tree is populated with values as determined at time of tree construct,

with few exceptions. This simplifies the processing somewhat, in that the interpreter

never needs to moderate exclusive access to a single structure that is shared by all

processes.

B.2.2 Variables

As variables and variable referencing is supported within the interpreter there still

remained the problem of how to determine if a branch-node in the tree referenced

a variable that did not exist on a remote computer. Two methods were devised to

deal with this challenge:

1. A subtree which is transmitted to a remote computer for evaluation is transmit-

ted along with a copy of the program stack that contained only the referenced

variables.

2. During tree construction any variable references (symbols) were looked up

immediately and substituted with the actual values.

After implementation Method 1 from above was deemed superfluous due to the

efficiency of Method 2. Distinctions between operations safe for remote-execution

and operations unsafe-for remote executions were programmed into the system. This

ensured that any branch-node operator such as the assignment of a variable would

not be executed remotely.

Due to the functional nature of the expression-evaluator it is neither necessary

nor desirable to have more than one operator that can access the program stack.

Branch-nodes, when evaluated, return the results - they do not perform any inter-

mediate storage of the result and they do not need to.
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There are exceptions made; a single primitive operator is provided to add or

replace a variable on the stack. Other than this isolated operator, all other operators

do not use the program stack as the variable value substitution is performed prior

to any evaluation taking place.

Unlike many other functional programming languages, variables are mutable

although a diagnostic is generated each time a variable is changed. For all practical

purposes in its intended usage variables are only assigned once, and rarely would

a user need to reassign a variable’s value unless they intended to simply reuse the

variable for some other purpose.

B.2.3 Tree Construction

Although the input for the expression evaluator very much resembles the syntax

of Lisp, there are large differences. For example, Lisp uses a table at run-time

(called the read-table) to attach semantics to input tokens. The Uncommon Lisp

Environment does not do so and uses a compile-time table generated using a lexical

scanner, Flex.

The scanner recognises the start of a branch, “(”, the end of a branch, “)” and

leaf nodes. Each token is either a number, a symbol or a string. Numbers are all of

type double while both symbols and strings are NULL-terminated character arrays.

Strings are differentiated from symbols by enclosing double-quotes.

Each token read in is stored in an atomic type, atom_t, which is then attached

to the current branch. The token signifying the start of a new branch causes a new

atom_t of type branch to be created. This new branch is attached to the current

branch, then this new branch is made the current branch and processing of input

tokens resumes.

Once a token signifying the end-of-branch condition arrives in the input stream,

the current branch is ended, and its parent is made the current branch. This simply

yet flexible mechanism allows the interpreter to build complex trees of arbitrary

length.

Once the tree is fully constructed the main program is notified that a new element

is ready for evaluation. This element may be either a branch-node or a leaf-node,

because it does not matter as both types of nodes are evaluated via the same func-

tion. The main program then passes the element to a pre-evaluation function which

substitutes all variable references with actual nodes. This step is important because
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the operators themselves are variables.

Thus, when the symbol “+” is encountered, the constructor of the tree does

not regard it as anything special - it is simply another variable reference. Prior to

evaluation, when variable references are being resolved, the symbol “+” gets resolved

like every other variable to reference on the stack.

The code implementing all of the above token.yy in the git repository.
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Appendix C

SQLite Development

C.1 Input script used for the experiment

1 DROP TABLE test_one;
2
3 CREATE TABLE test_one (
4 col_a INT PRIMARY KEY,
5 col_b INT
6 );
7
8 INSERT INTO test_one VALUES (1, 3);
9 INSERT INTO test_one VALUES (2, 6);
10 INSERT INTO test_one VALUES (3, 9);
11 INSERT INTO test_one VALUES (4, 12);
12 INSERT INTO test_one VALUES (5, 15);
13 INSERT INTO test_one VALUES (6, 18);
14 INSERT INTO test_one VALUES (7, 21);
15 INSERT INTO test_one VALUES (8, 24);
16 INSERT INTO test_one VALUES (9, 27);
17 INSERT INTO test_one VALUES (10, 30);
18 INSERT INTO test_one VALUES (11, 33);
19 INSERT INTO test_one VALUES (12, 36);
20
21 SELECT * from test_one;
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Appendix D

Potential New Opportunities

D.1 Fine-grained Unit-testing of functions

During development a surprising benefit of Rexel was encountered: functions in the

running program which crashed due to bad input or bugs crashed on the remote

machine while leaving the main program intact.

As all the remote function calls are implemented with timeouts, sooner or later

the main program timed out on a function call and returned a timeout status. These

occurrences naturally lead to developing this characteristic into an actual program.

The intention is that unit-testing can continue even in the cases of fatal bugs, as

the main program is on a different computer to the crashing function. The program

developed, func_tester, is in the git repo, currently in a very limited form but

future enhancements are planned due to the remarkable utility of the program.

What func_tester does is allow the user to specify a library filename and a

function within, along with a prototype to use for determining parameters for the

function. The program then runs this function on Rexel remote nodes with random

input a specified number of times, and produces a report providing the user with

the input that caused the function to timeout.

D.2 Quorum-based problem-solving

There was not enough time to flesh this idea out with a demonstration via a small ex-

ample program, nevertheless this could become a viable implementation of quorum-
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based problem-solving in disciplines where accurate results are critical. Many em-

bedded systems, should they fail, place humans in danger; this is particularly true

of the medical devices industry, the mining industries and many manufacturing in-

dustries.

With Rexel being compatible with a minimal Linux distribution, requiring noth-

ing more than the kernel and a minimal set of system libraries installed, it should

be possible to allow major decisions taken by these embedded computers to follow

a quorum-based solution, in which all of the various computers forming part of the

quorum have to get the same result of critical function calls before any potentially

dangerous action proceeds.

As a followup, a paper is planned which uses Raspberry Pi compute modules in

a set to execute critical software using Rexel to implement the quorum.
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Appendix E

The Problem with Threads

E.1 Nondeterminism Case-study

Threads are notorious for non-determinism[Lee, 2006]. Threads can be deadlocked

(causing a total halt in execution), can be starved (causing a partial halt in certain

services) or prone to either under-locking (leading to a data-race condition) or over-

locking (leading to a severe and non-obvious degradation in performance).

The implementation of Rexel faced numerous challenges with synchronisation

when threads were used to implement the rexel-node program. Around 150 hours

were spent tracking down intermittent bugs that were difficult, and in at least one

case, impossible to reproduce. A switch to a fork()-based rexel-node architecture

got the project back on track in less than 20 hours.

In advance of any criticisms aimed at the developer’s competence (or lack thereof),

there is at least one highly-cited paper detailing the problems with threads. The pa-

per [Lee, 2006] highlights just how difficult it is to get threads correct. The Ptolemy

System, having been developed by expert PhD’s and multiple graduate students,

along with experienced industry experts, a rigorous test schedule with 100% code-

coverage, formal review processes, comprehensive test-units and formal proofs of

correctness deadlocked after four years of operation.

This highlights the non-determinism inherent in shared-memory multiprocessing.

It’s not a question of if the program will crash, it’s a question of when the program

will crash. With threads in a non-trivial program, the system is almost certain to

crash. It may not do it when you first deploy it, it certainly won’t crash when you

are unit testing it, but rest assured that it will one day halt, crash, deadlock, starve

62



or data-race.

A rather older paper, [Ousterhout, 1996], points out that some percentage of

developers are capable in high-level languages with niceties such as garbage collection

and no pointers, a smaller percentage of developers are capable with lower-lever

languages like C, while an even smaller percentage is capable with complex languages

like C++. The very smallest percentage of developers will be capable of safely using

threads.

Which brings us to the all-important question: is your project employing the

top 10% or top 5% (or top x%, for a suitably impressive value of x%) of developers?

Because if you cannot honestly answer that question, then perhaps threads are not

a good fit for your project.

Threads are still used within Rexel , but in a limited and very highly curated

manner - I hesitate to allow proliferation of threads within code, keeping in mind the

pearls of wisdom from one of the titans of Software Development history[Kernighan

and Plauger, 1978] :

“Everyone knows that debugging is twice as hard as writ-

ing a program in the first place. So if you’re as clever as

you can be when you write it, how will you ever debug

it?”

- Brian Kernighan

E.2 Contention

At first glance threads seem a viable solution. A single program can easily take

advantage of multiple cores and run multiple executions at once. However there is a

limit to what threads can achieve. In a shared-memory threaded program, in which

all threads share the same memory space and can access each others variables, the

overhead of using threads needs to be balanced against the advantage of multiple

executions.

In a program with threads, access to shared variables must be protected by

a Mutual Exclusion Lock (mutex). Before any access is allowed each thread will
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attempt to acquire the lock. If the lock is busy then the thread is put into a queue

to wait for the lock to become available again.

As a solution becomes more parallel threads become less viable due to the mutex

waiting involved.

For a single threaded program the probability of acquiring exclusive access to a

shared variable without waiting is 1. In a program with two threads the probability

of either thread acquiring the lock without queueing is 1
2

or 0.5. For a program with

three threads that probability drops to 1
3

(0.333). For a program with n threads the

probability of a particular thread acquiring a shared resource without queueing is
1
n
.

As the number of threads grow the probability of not joining a queue when

accessing a shared variable grows asymptotically towards zero. For a mere 64 threads

the probability of not joining a queue is (1− 1
64

) or 0.016, which means that a thread

has a 98.4% chance of joining the queue.

Most practical programmers would argue that this isn’t a problem if the correct

design pattern is used (producer/consumer, etc). However, regardless of the design

pattern used, if any thread writes to the shared-variable then every other thread has

to first attempt to lock it exclusively before use. Of course if no thread writes to

the variable then each thread can simply keep their own copy and there will be no

contention for the variable. Most processors, in any case, simply employ caching

strategies to reduce the constant access time of contended variables.

Regardless of the number of physical cores on the computer and the mitigation

approaches, threaded solutions very quickly run into the above contention problem.

To address contention it may be desirable to run multiple tasks on a single machine

rather than multiple threads in order to maximise use of the multiple cores. This

approach does address the shared-variable/shared-memory problem as each task will

have its own memory space and need not contend for access to the same variables.

However you run into the above problem once again, only at a lower level. Even

though a machine may have multiple cores, each core executes instructions stored

in memory. Each instruction must be fetched from memory before execution, and

thus begins contention of the physical address bus. On a modern desktop computer

the address bus may be composed of between 48 and 52 copper traces that lead to

the memory. Before any task can execute, the cores themselves will find themselves

contending for the main memory even before any program data is needed.
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This is the same contention problem we find with threads. The only solution

appears to be by removing contention for the address bus, i.e. having individual

and distinct cores run tasks, each using their own uncontended address bus and

uncontended memory. In short, having different physical computers run the tasks.
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